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We propose a model for describing diffusion-controlled aggregation of particles that are contin-
ually deposited on a surface. The model incorporates deposition, diffusion, and aggregation. We
find that the diffusion and aggregation of randomly deposited particles “builds” a wide variety of
fractal structures, all characterized by a common length scale L;. This length L, scales as the ratio

of the diffusion constant over the particle flux to the power

1

7+ We compare our results with several

recent experiments on two-dimensional nanostructures formed by diffusion-controlled aggregation

on surfaces.

PACS number(s): 68.70.+w, 68.35.Fx, 61.43.Hv, 68.35.Bs

Understanding the processes underlying the growth of
thin films has led to widespread interest both from the
physical and technological points of view [1,2]. FEqui-
librium (“thermodynamic”) models have been developed
and applied with some success to the film-substrate sys-
tem [3]. However, recent dramatic improvements in ex-
perimental techniques, such as scanning tunneling mi-
croscopy, permit investigation of atomic details of the
embryonic “submonolayer” stages of nanostructure film
growth, and recent experimental work [4] has recognized
the importance of out of equilibrium (kinetic) effects on
the determination of the observed morphologies.

Addressing such out-of-equilibrium effects is important
if one is to be able to control the morphology of sub-
monolayer nanostructures. There exists some recent re-
search on out-of-equilibrium models; for example, mod-
els such as percolation have been developed to describe
surface deposition [5,6]. However, percolation assumes
that the deposited particles do not diffuse after being
deposited, when in fact not only diffusion but also ag-
gregation of the diffusing particles takes place. There
also exist models of diffusing particles that aggregate,
but such “cluster-cluster aggregation” (CCA) models [7]
do not incorporate the possibility of continual injection
of new particles via deposition.

In this Brief Report, we propose an out-of-equilibrium
model that incorporates simultaneously three phenomena
not previously included in a single model: deposition,
diffusion, and aggregation (DDA). The DDA model is
defined as follows.

(a) Deposition. Particles are deposited at randomly
chosen positions of the surface at a flux F' per lattice site
per unit time.

(b) Diffusion. A cluster of connected particles is cho-
sen at random and moved north, east, south, or west by
one lattice constant per unit time with a probability pro-
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portional to its mobility, which is given by D, = D;s™"
[8]. Here s is the number of particles in the cluster, D;
is the diffusion coefficient for a monomer (s = 1), and
the parameter v characterizes the dependence of D, on
cluster size.

(c) Aggregation. If two particles come to occupy neigh-
boring sites, they (and therefore the clusters to which
they belong) stick irreversibly [10].

Physically, it is not the flux but rather the normalized
flux ® = F//D, that tunes the relative strength of depo-
sition and diffusion. For high fluxes (® >> 1), diffusion
becomes negligible and we recover the classical static per-
colation model. The question is how to understand what
happens when diffusion becomes important. We simulate
our model on a square lattice with periodic boundary
conditions. We fix ® and the system size L, and follow
the time evolution of the system until a spanning cluster
appears. We call this final time the “spanning time.”

For a fixed flux, the morphology of the system changes
as a function of the system size. Figure 1 shows the
dependence of the “total coverage” and the “spanning
cluster coverage” as functions of the system size at the
spanning time; the total coverage is defined as the total
number of occupied sites divided by L? and the span-
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FIG. 1. Evolution of the total and spanning cluster coverages at the
spanning time as a function of the system size; here v = 1. We find
three regimes of behavior (I, II, and III), delimited by two length scales
L, and L,. For this figure, the flux is & = 10 %.
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ning cluster coverage as the number of sites of the span-
ning cluster divided by L2. We find three characteristic
regimes, delimited by two crossover length scales L; and
L,: L, is the characteristic diffusion length of a single
particle on the surface, while L, emerges from the com-
petition between deposition and cluster diffusion.
Regime I (L < Ly): “Particle diffusion regime.” In
this regime, only one cluster is present in the system.
This is seen in Figs. 2(a) and 2(b) and is also supported
by Fig. 1: the total and spanning cluster coverages are
superposed. Since the characteristic diffusion length of
a single particle L; is larger than the system size L, ev-
ery deposited particle attaches to the already existing
cluster before the next particle is deposited. At short
times, the cluster is small and virtually all the particles
are deposited outside the cluster and reach it by Brown-
ian diffusion, so we expect that the cluster should have
features in common with DLA. Indeed, at short times,
we find that the cluster resembles DLA [Fig. 2(a)]. Its
fractal dimension, measured by the sandbox method [2]
is found to be 1.7, in agreement with the expected value
for a DLA cluster [2]. At longer times, when the size
of the cluster becomes comparable to the system size, a
larger fraction of particles are deposited inside the clus-
ter. Therefore, the model cannot be precisely the same

as DLA; e.g., at the time of spanning, almost all new par-
ticles are deposited inside the boundaries of the cluster
[cf. Fig. 2(b)].

Regime II (L, < L < L3): “Cluster diffusion regime.”
Now several clusters are present in the system, as can be
seen in Figs. 2(c) and 2(d). This can also be inferred from
Fig. 1: at L; the curves for the different coverages split,
indicating that, in addition to the spanning cluster, there
are other clusters contributing to the total coverage. The
reason for this is that the diffusion length is now smaller
than the system size, so that several clusters nucleate on
the surface. These clusters are separated by the distance
set by the diffusion length L,. We find that the spanning
cluster is mainly built by the accretion of the diffusing
nucleating clusters [Fig. 2(d)].

Regime IIT (L > L3): “Percolation regime.” At short
times, many clusters are present in the system [Fig. 2(e)]
and they are separated, as in regime II, by a distance L;.
At the spanning time, the system resembles a percolation
network [Fig. 2(f)]. The fractal dimension of the clusters
as measured by the sandbox method is close to 1.9, cor-
responding to the value of percolation clusters [2]. This
can also be seen in Fig. 1 from the slope of the spanning
cluster coverage as a function of the system size. More-
over, in this regime only, we find that the total coverage
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FIG. 2. System morphologies in the three regimes: (a) and (b) regime I, (c) and (d) regime II, and (e) and (f) regime III. Regime I (system
size smaller than L, ): shown are two stages of the growth for ® = 10~° (L; ~ 500) and L = 200. (a) Total coverage, 0.02; (b) spanning point:
total coverage, 0.27. Regime II (system size between L, and L3 ): shown are two stages of the growth for & = 10~°® (L; ~ 90 and L; ~ 10‘) and
L = 300. (c) Total coverage, 0.1; (d) spanning point: total coverage, 0.31. Regime III (system size larger than L3 ): shown are two stages of the
growth for & = 10™% (L, ~ 17 and L3 ~ 36) and L = 300. (e) Total coverage, 0.1; (f) spanning point: total coverage, 0.49. For all six figures, we

choose v = 1.
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scales with the system size as p.(L) — pc(o0) ~ L~1/¥,
with v >~ 1.3, which is in good agreement with the expo-
nent 4/3 predicted by percolation [2].

Figure 1 shows results obtained for the flux ®=10"*%,
but similar results have been obtained for the other fluxes
we have studied (107® < & < 10%5). We find that a
change of the flux affects the values of the two crossover
lengths L; and L,. We have determined L; and L, for
several different fluxes: the results are presented in Fig. 3.
The dependence of L; on ® can be understood by not-
ing that the time needed by a single deposited particle
randomly diffusing to explore the whole system is pro-
portional to the system area and inversely proportional
to the diffusion coefficient: t4;y ~ L2/D;. By definition
of the flux, the average time at which another particle is
added to the system is tgep = 1/(FL?). If tgiy < taep, the
particle has sufficient time to explore the whole system
(and therefore find an already existing cluster) before an-
other particle is added. Consequently, a single cluster is
built. If t4;f > tgep, the particle finds another deposited
particle before having had time to explore the whole sys-
tem. Then several clusters are formed: this corresponds
to regime II. The crossover between the two regimes oc-

curs when these two times become comparable. This
occurs for

L 1~ (p_lbl ) (1)
where ¥; = 1/4, in excellent agreement with the nu-

merically obtained exponent of 0.24 + 0.02 (Fig. 3). L,
can be interpreted as the length scale determined by the
competition between particle deposition (t4ep) and single
particle diffusion (t4:z).

The second length scale Ly also scales with the flux

(2)
We find that v, de-

L2 ~ ®_¢2a

where ¥ = 0.9 £ 0.2 for vy = 1.
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creases as 7 increases, unlike 17, which is independent
of v. To uncover a physical interpretation of L,, we fix
the flux and change the system size. For spanning to
occur, we must grow a cluster of size comparable to the
system size. If the system is large, the clusters become
large and therefore their diffusion coefficient becomes ex-
tremely small. In this limit, deposition dominates and
connects the system in a percolationlike way. For smaller
systems, the clusters are also smaller; they can move and
connect one another to build clusters of sizes comparable
to that of the system. Then diffusion dominates the con-
nectivity of the system. The boundary between these two
system sizes is set by Ls. Then, L, can be interpreted as
the length scale determined by the competition between
particle deposition and cluster diffusion. This analysis is
supported by the fact that the second crossover L is not
observed when only single particles are allowed to move,
thereby suppressing the possibility that the connections
are made by cluster diffusion.

Based on the previous results, we may now construct
a “morphology phase diagram” that serves to charac-
terize the morphology of the system at the spanning
time in terms of the two tuning parameters L and &
(Fig. 3). The three regimes I-III are delineated by the
two crossover lines L;(®) and Ly(®), which intersect at a
“critical point” whose coordinates (®., L.) depend only
on 7. Thus for a fixed system size L, two situations can
arise, depending on the value of v. (i) If L <« L.(v),
then the system shows a direct transition from the single
cluster regime to percolation as the normalized flux &
increases. (ii) If L > L.(v), then regime II can also be
observed for intermediate values of the normalized flux.

In summary, we have proposed a model for describ-
ing diffusion-controlled aggregation of particles that are
continually deposited on a surface. The model, which in-
corporates deposition, diffusion, and aggregation, is mo-
tivated by recent thin film deposition experiments using
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FIG. 3. The (®, L) phase diagram
for v+ = 1. Shown is the depen-
! dence on normalized flux of the two
| length scales L; (full circles) and L,
| (open squares). The lines separating
| the three regimes I-III have been ob-
- tained by linear fits of the data for
| L, (slope 9; = 0.24 + 0.02) and L3
(slope 3 = 0.9 + 0.2). The arrows
indicate the critical values ¢, and
i L.. The insets show typical mor-
‘ phologies for each regime.
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the low-energy cluster beam deposition (LECBD) tech-
nique [5]. Indeed, the structures obtained in Figs. 2(c)
and 2(e) (low coverages) resemble some experimental im-
ages obtained by LECBD (see Fig. 3 of [6]) on substrates
held at low temperatures. We find that the model per-
mits one to distinguish the effects of deposition, diffusion,
and aggregation and that tuning the relative strength
of, e.g., deposition and diffusion, generates a rich range
of morphologies, including diffusion limited aggregation,
CCA, and percolation. The length and time scales char-
acterizing these morphologies depend on experimentally
controllable parameters such as deposition flux and diffu-
sion constant, raising the possibility that the model may
prove useful in future studies seeking controlled design
of nanostructure morphologies. We hope that the model
may be useful in many situations where diffusion and ag-
gregation occur in the presence of continuous deposition.

Note added. After this work was completed, Roder et
al. [11] published a series of remarkable experiments doc-
umenting the formation of nanometer-scale surface struc-

tures. Qur model mimics the same process and produces
morphologies that remarkably resemble the experimen-
tal structures [e.g., Fig. 2(c) bears a striking similarity
to Fig. 1d of [11]]. Also, after this work was submitted,
we learned of a careful study [12,13] that treats a re-
lated model in which clusters do not diffuse. We recently
learned that 9, = % has been derived in a more general
context in connection with studies on atomic diffusion
during MBE growth [14].
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FIG. 2. System morphologies in the three regimes: (a) and (b) regime I, (c) and (d) regime II, and (e) and (f) regime III. Regime I (system
size smaller than L, ): shown are two stages of the growth for & = 10™% (L, ~ 500) and L = 200. (a) Total coverage, 0.02; (b) spanning point:
total coverage, 0.27. Regime II (system size between Ly and Lj): shown are two stages of the growth for ® = 107% (L; ~ 90 and L ~ 10*) and
L = 300. (c) Total coverage, 0.1; (d) spanning point: total coverage, 0.31. Regime III (system size larger than L3 ): shown are two stages of the
growth for ® = 1072 (L; ~ 17 and Lz ~ 36) and L = 300. (e) Total coverage, 0.1; (f) spanning point: total coverage, 0.49. For all six figures, we
choose v = 1.
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FIG. 3. The (®, L) phase diagram
for ¥+ = 1. Shown is the depen-
dence on normalized flux of the two
length scales L, (full circles) and L;
(open squares). The lines separating
the three regimes I-1II have been ob-
tained by linear fits of the data for
Ly (slope ¥; = 0.24 + 0.02) and L3
(slope 3 = 0.9 + 0.2). The arrows
indicate the critical values $. and
L.. The insets show typical mor-
phologies for each regime.



